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N O N S T A T I O N A R Y  S P A T I A L  M O T I O N S  O F  A 

C O M P R E S S I B L E  GAS 

G. M. M a k h v i l a d z e  a n d  S. B.  S h c h e r b a k  UDC 532.516.5 

A method is suggested for numer ica l  integration of nonstat ionary spatial  Nav ie r -S tokes  equa- 
tions descr ibing the motion of a compress ib le  heat-conducting gas. As an example, the numer -  
ical solution is provided of the two-dimensional  natural  convection problem of a compress ib le  
gas in a closed volume. 

1. The necess i ty  of numer ica l  solution of non-one-dimensional  Nav ie r -S tokes  equations for a c o m p r e s -  
sible viscous,  heat-conducting gas is generated in studying various physical  p rocesses  which are  important  in 
p re sen t -day  technology. An impor tant  p rob lem is the creat ion of " fas te r"  calculation methods. 

Various f ini te-difference schemes  were developed, explicit and implicit  (their cha rac te r i s t i c s  and bibli-  
ography can be found, e.g., in [1-4]) . The explicit ones are  simple and economical,  since they require  a mini-  
mal  number  of operat ions at each time layer.  However, to guarantee stabili ty of these schemes it is neces -  
s a r y  to impose res t r i c t ions  on the t ime step (or the i terat ion p a r a m e t e r  in the case of s ta t ionary problems)  
with which the calculat ion is per formed:  

�9 ~rnin{~,,  ~ ,  z~, %}, (1) 

"q = h /u ,  "~ = h2/• ~a = h2/v, % = h /cs .  

The stabil i ty conditions (1) can significantly dec rease  the effectiveness of calculation due to the neces -  
si ty of select ing a t ime step significantly sma l l e r  than dictated by the physical  p rocess  itself. If, e.g., the 
motion is essent ia l ly  subsonic, which is charac te r i s t i c  of many problems of combustion, convection, and other 
problems of the rmodynamics ,  the res t r i c t ion  ~- _< r s = h/c s can be purely formal  f rom the physical  point of 
view, related oniy to the choice of the f ini te-difference scheme. Thus, in combustion problems the c h a r a c t e r -  
istic gas velocit ies are  U < 10 m / s e e ,  while the sound velocity is Cs > 300 m/see,  i.e., for the rat io we have 
e s / U  > 30. Consequently, the calculation t ime of such "slow" problems can be extended by at least  30 t imes 
due to the res t r i c t ion  on the t ime step T _< 7 s imposed by the choice of an explicit scheme. 

Implicit  f ini te-difference schemes of intermediate  type (between explicit and purely  implicit)  have be-  
come most  popular,  as they allow to avoid some of the res t r ic t ions  on the t ime step or  reduce them by an ap- 
prec iable  factor .  Along with the less  r igid stabil i ty conditions these schemes,  constructed by means of the 
f ract ional  step method [ 1, 4 ] ,  lead to a number of operations per  t ime step comparable  with the number  of 
operat ions for  explicit schemes.  

Several  such schemes  [5-11] were suggested and tr ied for solving the full two-dimenaional  nonstation- 
a ry  N a v i e r - S t o k e s  equations of a compress ib le  gas.  

The study of var ious natural  convection p rocesses  became possible due to the scheme suggested by 
Polezhaev [5] (see also [6]). The scheme of [5] is conditionally stable: it has no res t r ic t ion  on the step ~- -< 
{T2, T3} , but  requi res  sat isfact ion of the condition T -< 7 ,  ~ 7s i f .  is the maximum allowed step in [5]) ,  due, 
obviously, to approximating p r e s s u r e  t e rms  on the lower time layer .  It must  be noted, however, that the r e -  
maining stabil i ty condition T <_ r ,  ~ ~'s in studying slow motions can provide a s t rong res t r i c t ion  on the time 
step and lead to a large expenditure in computer  time. We have encountered this fact, rendering the analysis 
difficult, in using the scheme of [5] for  solving a problem in combustion theory. 

Implici t  schemes,  possess ing  a significant stabil i ty margin,  were  proposed [7-10] for obtaining station- 
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a r y  solut ions.  These  s c h e m e s ,  in which ~ is used  as an i te ra t ion  p a r a m e t e r ,  make  it poss ib le  to obtain a s t a -  
t ionary  solution with a sma l l  expendi ture  in co mpu te r  t ime.  However ,  in calculat ing nons ta t ionary  p r o c e s s e s  
with a t ime  s tep T > T.  they p rov ide  a solution dif fer ing f r o m  the t rue  one. Thus, a detai led c o m p a r i s o n  of 
the s c h e m e s  of [ 5 ] and [7 ], c a r r i e d  out in [ 11 ] in solving the two-d imens iona l  convect ion p rob l em,  showed 
that  by the s cheme  of [7 ] the s t a t i ona ry  solution can be obtained 3 t imes  f a s t e r  than by  using the scheme  of 
[5]. The nons ta t ionary  p r o c e s s  of es tab l i sh ing  s t a t iona ry  gas  motion by [7 ] was  ca lcula ted  c o r r e c t l y  only by  
using the s a m e  t ime  step T = T , ,  as  in the ca lcula t ions  of [5]. Fo r  many  p r o b l e m s  it is  of i n t e r e s t  to con-  
s i de r  the nons ta t ionary  per iod  of es tab l i sh ing  s t a t iona ry  motion. I t  mus t  a lso  be taken into account  that  a s t a -  
t ionary  solution may  not ex i s t  o r  may  not be  unique. In these  ca se s  an effect ive calcula t ion of the nonsta t ion-  
a r y  p r o c e s s  is n e c e s s a r y .  

In the p r e s e n t  p a p e r  we cons t ruc t  an impl ic i t  f in i te -d i f fe rence  s cheme  over  the coord ina tes  of a division, 
p o s s e s s i n g  the p r o p e r t i e s  of the total  approximat ion .  Using it, one can in tegra te  numer i ca l ly  the nonsta t ion-  
a ry  N a v i e r - S t o k e s  equations desc r ib ing  spa t ia l  mot ion of a c o m p r e s s i b l e  gas  with a r a t e  dictated by the speed 
of calcula t ing the phys ica l  p r o c e s s .  The s cheme  sugges ted  is effect ive in calcula t ing both s ta t ionary  and non- 
s t a t ionary  p r o c e s s e s ,  and g ives  a s ignif icant  gain in t ime.  To i l lus t ra te  i ts  poss ib i l i t i e s  we provide  a n u m e r -  
ical  solution of a model  p r o b l e m  on na tura l  convect ion of a c o m p r e s s i b l e  gas  in a c losed ve s se l  whose walls  
a r e  suppor ted  a t  d i f ferent  t e m p e r a t u r e s ,  and c o m p a r e  the r e su l t s  with those provided by  the s cheme  of [5]. 

2. In m a t r i x  notat ion the s y s t e m  of nons ta t ionary ,  two-d imens iona l  N a v i e r - S t o k e s  equations descr ib ing  
the mot ion of a v iscous ,  hea t -conduct ing  c o m p r e s s i b l e  gas  is 

0__~_~ + A(tp)q~= F, A - - - - A ~ + A ~ + A s ,  (2) 
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Here  AI ac t s  in the x di rect ion;  A 2 in the y direct ion;  and the operator" A 3 contains mixed der iva t ives .  The 
values  of the d imens ion les s  p a r a m e t e r s  M, Re, P r ,  Frx ,  and F r y  for  each specif ic  p r o b l e m  a re  de te rmined  
by  the choice  of c h a r a c t e r i s t i c  quant i t ies ,  length, t ime,  densi ty,  and t e m p e r a t u r e ,  to which the d imensional  
quant i t ies  r e f e r .  The gas  is a s s u m e d  to be  ideal .  The v i scos i ty  and heat -conduct ion coeff ic ients  a r e  a s su med  
constant ,  and v iscous  ene rgy  d iss ipa t ion  is  not taken into account.  The p r e s s u r e  equation was obtained by 
combining the continuity and t e m p e r a t u r e  equations,  mult iplying them by  T and p, r e spec t ive ly .  
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n We introduce a un i form s p a c e - t i m e  gr id  xi = ih, yj = j l ,  t n = nT, and denote ~O(tn, xi, yj) = ~i,j" The 
t ime  and space  de r iva t ives  a r e  approx imated  as follows: 

at ~ Ox 2h ax ~ h ~ 
(3) 

Relating the space derivatives to the upper time layer, we obtain a grid equation corresponding to Eq. (2): 

,g 
(4) 

Let ~n§ be the solution on the (n + 1)-th l aye r ,  cons t ruc ted  by l inear  ext rapola t ion f r o m  the known values of 
the original function onto two later time layers: 

~n+x = q0n _~ A n ' whereA n = qD n __ qgn_ 1 

is the i n c r e m e n t  of the or iginal  function on neighboring t ime l aye r s .  

We introduce the quantity 

8 n +  I ~ qgn§ _ _  ~ n §  

the deviat ion between the unknown function and its p r e l i m i n a r y  cons t ruc ted  value (A and e a r e  columns with 
components  A u, A v, A P, A T and eu, e v  e P  e T  respect ive ly) .  

Substituting (5) and (6) into (4) and rep lac ing  A(~0 n+~) by ~(~n+l), which causes  an insignif icant  e r r o r  in 
the ease  of sma l l  e, we obtain 

An effect ive  numer i ca l  rea l iza t ion  of this equation can be obtained by d iscarding the t e r m  TA 3 (~n+l) .  
e n§ Indeed, rep lac ing  the ope ra t o r  in the lef t -hand side of Eq. (7) by the fac tor iza t ion  

(7) 

we obtain the equation 

whose solution is  equivalent  to the solution of the one-d imens iona l  l inear  equations with block m a t r i c e s :  

(8) 

(5) 

(6) 

(9) 

[E + ~A., ~n+l)I en+' = ~, 

(10) 

(11) 

where  ~ is a column with components  ~u  ~v, ~p,  ~ T (for a m o r e  detai led descr ip t ion  with the use  of gr id  
subsc r ip t s  see  [ 12 ]) . 

Equation (10)wi th  f o u r t h - o r d e r  m a t r i c e s  s e r v e s  for  de te rmin ing  the auxi l ia ry  quantity ~. The s t ruc tu re  
of the equations,  however ,  is  such that  to solve it one needs a ma t r ix  d i sp lacement  along the x axis with 
t h i r d - o r d e r  m a t r i c e s  only. The equation fo r  ~v is solved by s c a l a r  d i sp lacement  along the s ame  direct ion.  
Following this,  the quanti ty e n+t is s i m i l a r l y  de te rmined  f r o m  Eq. (11) by d i sp lacements  along the y axis. By 
Eq. (6) we then calcula te  the unknown quantity ~n+l. The suggested d i f ference  scheme with the total approxi -  
mat ion is of o rde r  O(T + h 2 +/2).  The s t a t ionary  solution can be obtained by es tabl ishing an asympto t ic  solu-  
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F ig .  1. T i m e  d e p e n d e n c e  of  the  N u s s e l t  n u m b e r  fo r  a h e a t e d  wa l l ,  
o b t a i n e d  b y  the s c h e m e  of  [5] wi th  a s t e p  T = r ,  = 0.005~ and by  
the s c h e m e  of  Sec.  2 wi th  T = 2 T , ,  4 T . ,  8 T ,  ( c u r v e  1), 16T.  (2), 
3 2 ~ ,  (3) (M = M 1, 21 x 21 g r id ) .  

F ig .  2. Nu( t ) ,  c a l c u l a t e d  b y  the s c h e m e  of  [5] wi th  T = 1-. = 
0.0028, and b y  the  s c h e m e  of  Sec.  2 wi th  T = 8T, ,  16T. ( c u r v e  1), 
32T, (2), 64v ,  (3) (M = M1, m e s h  4 1 x  41).  

t i on  of  the  n o n s t a t i o n a r y  p r o b l e m  a t  long  t i m e s .  

L i n e a r  s t a b i l i t y  a n a l y s i s  of  the  s c h e m e  s u g g e s t e d  was  p e r f o r m e d  fo r  s i m p l e  two- -d imens iona l  m o d e l  
e q u a t i o n s ,  the  h e a t - c o n d u c t i o n  equa t ion ,  the  " s o u n d "  k e r n e l  of the  N a v i e r - S t o k e s  s y s t e m  of  equa t ions ,  and the  
equa t ions  of  c o n v e c t i v e  t r a n s p o r t .  I t  s e e m s  tha t  f o r  the  f i r s t  two c a s e s  the  s c h e m e  is  a b s o l u t e l y  s t a b l e .  In the  
t h i r d  c a s e  the  s t a b i l i t y  c o n d i t i o n  i s  v _ ~1, i . e . ,  t h e r e  i s  no r e s t r i c t i o n  on the t i m e  s t e p  T --< TS. Undoubted ly ,  
t h i s  a n a l y s i s  i s  i n c o m p l e t e ,  and  the s t a b i l i t y  of  the  m e t h o d  c a n  b e  judged  on ly  by  n u m e r i c a l  so lu t i on  of the 
ful l  e q u a t i o n s .  In s y s t e m a t i c  c a l c u l a t i o n s  ( s e e  Sec.  3) the  s c h e m e  was  s t a b l e  up to C o u r a n t  n u m b e r s  K _ 104 
(K = T /hM) ,  which  in  d i m e n s i o n a l  v a r i a b l e s  c o r r e s p o n d s  to 7 _< 104Ts ( c a l c u l a t i o n s  w e r e  not  c a r r i e d  out  fo r  
l a r g e  K va lues ) .  

The  p o s s i b i l i t i e s  of the  m e t h o d  s u g g e s t e d  w e r e  a n a l y z e d  on the m o d e l  p r o b l e m  of  c o n v e c t i o n  of  a c o m -  
p r e s s i b l e  g a s  in a c l o s e d  r e g i o n  [6 ]. 

3. C o n s i d e r  the  m o t i o n  of a c o m p r e s s i b l e  g a s  in a c l o s e d  r e c t a n g u l a r  r e g i o n  0 -< x _ Ho, 0 -< y - L 0 in  
the  p r e s e n c e  of  a g r a v i t y  f o r c e  a long  the v e r t i c a l  ax i s  ( F r x l  = 0). On the s i d e  w a l l s  x = 0, 0 -< y -< L 0 and 
x = H0, 0 -< y -< L 0 t h e r e  a r e  c o n s t a n t  t e m p e r a t u r e  v a l u e s  (T 2 > T1) , and the top and b o t t o m  a r e  t h e r m a l l y  
i s o l a t e d  ( 0 T / a y  --- 0). At  the  w a l l s  the  s t i c k i n g  cond i t ion  u = v = 0 i s  s a t i s f i e d  fo r  x = 0, x = H o and y = 0, y = L 0. 

A s  i n i t i a l  c o n d i t i o n s ,  we a s s i g n  l i n e a r  t e m p e r a t u r e  and g a s  f low d i s t r i b u t i o n s  

u (0, x, g ) =  v (0, x, y ) =  0, T (0, x, y)----T2--(T2--T,)x/Ho, P= const, (12) 

c o r r e s p o n d i n g  to the  s t a t i o n a r y  s t a t e  of  the  s y s t e m  in the a b s e n c e  of g r a v i t y .  

To s e t  up the  p r o b l e m  in t e r m s  of  c h a r a c t e r i s t i c  s c a l e s  u s e d  in i n t r o d u c i n g  d i m e n s i o n l e s s  v a r i a b l e s ,  
we t ake  the  q u a n t i t i e s  L0, TI,  Pi,  and ~ / L 0 / g  ( the v e l o c i t y  s c a l e  is  then  the quan t i t y  ,] Log ). 

The  d i m e n s i o n l e s s  n u m b e r s  a p p e a r i n g  in  the  o r i g i n a l  equa t i ons  a c q u i r e  the  f o r m  

= ~ / /  Log L0 ]/'L--~Pi , Fr~ 1 M u ' Re = 'l -= (13) 

(the corresponding Rayleigh number is expressed by the equation Ra =" Prlqe2(T2 -- TI~/TI). 

The results of calculations are conveniently characterized by the time behavior of the mean Nusselt 
n u m b e r  

l 

N u ( x ) =  r--:- L o '  " 
0 

dy (H- -  
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In i t i a l ly  one usua l ly  a s s i gns  A u = Av = AP = A T  = 0. 

To con t ro l  the a c c u r a c y  of the ca lcu la t ions ,  we i n c u r r e d  m a s s  ba lance  at  the nons ta t ionary  por t ion,  
while in the s t a t i ona ry  reg ion  the following r e l a t i ons  a r e  sa t i s f i ed  

1 H  I H  

<15) 
O0 O0 

In r e a l i z i n g  the n u m e r i c a l  a l go r i t hm we used  as  boundary  condit ions for  13 the o r ig ina l  p r e s s u r e  equa-  
tion, wr i t t en  with account  of the boundary  condit ions for  ve loc i ty  and t e m p e r a t u r e ,  in th is  case  the f i r s t  s p a -  
t ia l  d e r i v a t i v e s  were  approx ima ted  by the t h r e e - p o i n t  equation of s e c o n d - o r d e r  accuracy ,  and the second de-  
r i va t i ve s  we re  taken ove r  the n o r m a l  to the wal l  by a f i r s t - o r d e r  a c c u r a c y  equation. The s e pa r a t i on  of bound-  
a r y  condi t ions for  ve loc i ty  and t e m p e r a t u r e  does  not r e qu i r e  explanat ion;  the boundary  condit ions for  p r e s -  
su re  were  a lso  s epa ra t ed ,  as ins ide  the region.  

Each va r i an t  was ca lcu la ted  by two methods:  by the scheme d i s c u s s e d  in Sec. 2, and by the scheme of 
[5]. In the ca lcu la t ions  we used  the following values  of d imens ion l e s s  p a r a m e t e r s :  y = 1.4, H = 1, Re = 250, 
P r  = 0.71, Ta = 0.5 i r a  ~ 2.2- 104). The ca lcu la t ions  we re  p e r f o r m e d  with va r ious  t ime  s teps  over  a 21 x 21 
g r id  fo r  values  of the Mach number  M 2 = 1/320, M~ = 1/20. Severa l  r e s u l t s  were  obtained on a 41 • 41 gr id .  
P r o g r a m s  were  wr i t t en  in FORTRAN-IV for  an EC-1040 computer .  Resu l t s  of ca lcu la t ions  a r e  p r e s e n t e d  in 
F igs .  1-3. 

F i g u r e  1 shows Nu(t),  obta ined by the scheme  of [5] with the max imum step a l lowed for  it  T.  = 2TS = 
2hM1, and by the scheme  of Sec. 2. The d i f fe rence  in the Nu values ,  obtained by the scheme of [5] and by the 
scheme  of (10), (11) with T = 2T, and 4T. ,  cons i s t s  of 0.3%, and with T = ST. -- 1.570, i . e . ,  the r e s u l t s  p r a c -  
t i ca l ly  coincide,  t he r e fo re  they a r e  r e p r e s e n t e d  on the f igure  by one l ine (curve  1). 

Thus, an eightfold i n c r e a s e  in the s tep  g ives  ful ly s a t i s f a c t o r y  r e su l t s .  F u r t h e r  i n c r e a s e  in the t ime  
s tep leads  to a s ign i f ican t  d i f fe rence  in the Nu values  (curves  2 and 3). 

S i m i l a r  r e s u l t s  we re  a l so  obtained for  Maeh number  va lues  M = IV[ 2. 

F o r  M = M i we a l so  p e r f o r m e d  ca lcu la t ions  on a fine g r id  (Fig.  2 ) .  Resu l t s  of ca lcu la t ions  by the 
s cheme  of [5] with the max imum al lowed s tep for  i t  T,  and by the scheme (10), i l l )  with v = 8T., 16T. l ie  on 
the s a m e  curve  1. The d i f fe rence  in Nu va lues ,  ca lcu la ted  by the scheme of [5] and by the scheme of Sec. 2 
with a s tep 16 t imes  l a r g e r ,  is  l e s s  than 1.570. The g e n e r a l  shape of the dependence p r a c t i c a l l y  does not 
change in c o m p a r i s o n  with Fig.  1. Thus, in using scheme /10), (11) the s ize  reduct ion  in the spa t i a l  s tep does 
not lead  to a d e c r e a s e  in the opt imum t ime  step,  with which one can ca lcu la te  a nons ta t ionary  p r o c e s s  quite 
a ccu ra t e ly .  The ca lcu la t ion  t ime  up to t = 11.4 ( fur ther  ca lcu la t ions  were  not pe r f o r m e d)  was 5.5 h by the 
s cheme  of [5],  and 30 rain by the scheme  of Sec. 2 with T = 16T,. 

In a l l  ca lcu la t ions  p e r f o r m e d  the m a s s  ba lance  was s a t i s f i ed  with an a c c u r a c y  of 0.570. Rela t ions  (15) 
we re  s a t i s f i ed  with an a c c u r a c y  of 0.5, 3, and 370, r e s p e c t i v e l y .  

Methodica l ly  p e r f o r m e d  e x p e r i m e n t s  ind ica te  the e f fec t iveness  of the ca lcu la t ion  m e t h o d  sugges ted  for  
solving both s t a t i o n a r y  and nons ta t iona ry  p rob lems .  F o r  the convect ion model  p r o b l e m  a s igni f icant  gain in 
ca lcu la t ion  t ime  was obtained in c o m p a r i s o n  with the method of [5]. 

4. We have a number  of r e m a r k s  concerning  the method suggested.  This method can be g e n e r a l i z e d  and 
used  fo r  cons t ruc t ing  a whole scheme of p r o b l e m s  approx ima ted  by nonl inear  equations in p a r t i a l  de r iva t i ve s .  
We d i s cus s  the g e n e r a l  idea  of the i r  cons t ruc t ion  on the example  of the g r i d  equation 

(pn+x __ ,:pn 
- -  --[- v~ ((p"+') qD"+' = O, A ----- v~, + A. . ,  ( 1 6 )  

in which A1 and A2 a r e  g r i d  o p e r a t o r s ,  each of which ac ts  only in one d i rec t ion .  

Let  ~n+l be an app rox ima te  solut ion on the in + 1) - th  l a y e r  by any method. We introduce,  as above, the 
quant i t ies  

en+1 = q~.+l __ ~+] ,  An+z = q~+~ _ qD~. (17) 

Substi tut ing (17) into (16) and r ep l ac ing  Ai(~p n§ by ]k i (~n§ we obtain 

We cons t ruc t  a scheme s i m i l a r  to (6)=(11): 
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Fig. 3. Nu(t),  ca lcula ted  by the scheme  of [5] 
with r = T,  (curve  1), and by the s cheme  of 
Eq. (20) with r = 4~, (2), 8T ,  (3), 16T, (4) 
( M = M  2, m e s h  21x  21) 

[E + ~,~ ~+~)1 e~+~ = ~- 

The e f fec t iveness  of the l a t t e r  depends on how w e l l  the function ~n§ was se lec ted.  

At the f i r s t  s tage  of s tudy we t r ied  the s i m p l e s t  scheme,  in which a value q~n was se lec ted  as the func- 
t ion ~n§ In this ca se  the quantity e n§ = ~n§ _ ~n ,  on which the ope ra to r  A acts ,  was p ro jec ted  on the up-  
p e r  t ime  l aye r ,  is the d i f fe rence  of va lues  of the unknown functions on neighboring t ime  l aye r s .  Equation (19) 
acqui res  the f o r m  

[E + ~Ai (~n)l ~ --- - -  ~ (~n) ~ ,  [E + ~A2 (gn)l ~ + i  _ ~. (20)  

The r e su l t s  of solving the convect ion t e s t  p rob lem,  cons idered  in Sec. 3, by means  of Eq. (20) a r e  
shown on Fig. 3. The s c h e m e  of (20) gives  c o r r e c t  r e su l t s  on the nons ta t ionary  por t ion  only in calcula t ions  
with r -- r . .  F o r  l a rge  r the solution on the nons ta t ionary  por t ion  devia tes  m o r e  s t rongly  f r o m  curve  1. 
Neve r the l e s s  Eq. (20) is useful  for  obtaining a Sta t ionary solution with l a rge  T. 

We note that  the scheme  of (20) is s i m i l a r  to the s cheme  sugges ted  in [7] (see  also [10, 11]). The dif-  
f e r ence  cons i s t s  only of the fac t  that  in (20) the ope ra to r  A is decomposed  into two ope ra to r s :  A1 and A2, 
act ing in d i f ferent  d i rec t ions ,  while in [7 ] i t  is decomposed  into four (along with decomposi t ion  in coordina tes ,  
one involving phys ica l  p r o c e s s e s  was also used  in [7 ]). 

Since the scheme  of (20) is insuff icient ly effect ive in calculat ing a nons ta t ionary  p r o c e s s ,  we cons t ruc ted  
the s cheme  (10), (11), d i scussed  in Sec. 2, with ~ n§ = ~n + a n  giving quite good resu l t s .  

The p r o c e d u r e o f  cons t ruc t ing  decomposi t ion  s chemes  can be continued. The following step,  e.g.,  con- 
s i s t s  of calculatin_g ~ n+l by the values  of the unknown function at the l a t t e r  3 t ime l aye r s  by means  of quad-  
ra t i c  extrapolat ion,  i .e. ,  ~n+l = ~ n  + A n + en. 

Calculat ions by Eq. (19) with the functions ~n+l thus de te rmined ,  p e r f o r m e d  for  the convect ion p ro b l em 
fo rmula ted  in Sec. 3, gave r e su l t s  p r ac t i ca l l y  coinciding with those obtained by means  of the bas ic  scheme  
(10), (li). 

In a number  of s y s t e m a t i c  expe r imen t s  on the t es t  s cheme  (10), (11), as well  as (20) and the scheme  
with ~n§ = ~on + An + en applied to the p r o b l e m  of Sec. 3, the t ime  de r iva t ive  was approximated  by the s ec -  
o n d - o r d e r  equation 0~ /~ t  ~ (3~ n §  4~  n + ~on-1)/2T, which did not lead, however ,  to any change in the r e -  
sul ts  given above. This impl ies  that  the e r r o r  in calcula t ions  with a s tep T > T. is ,  obviously,  de te rmined  
b a s i c a l l y  by the decompos i t ion  e r r o r .  

In conclusion,  we note the gene ra l  na ture  of the method of calcula t ion suggested.  It  can be cons ide red  as 
a dis t inct  t h r e e - l a y e r  i t e ra t ion  method for  solving s y s t e m s  of nonl inear  equations in pa r t i a l  de r iva t ives  (not 
n e c e s s a r i l y  the N a v i e r - S t o k e s  equations).  Recent ly  p e r f o r m e d  calcula t ions  of convection p rob l ems  by means  
of the method d i scussed  above showed i ts  e f fec t iveness  in using nonuniform gr ids  in solving equations with 
th ree  spa t ia l  va r i ab les .  F u r t h e r  study Of the poss ib i l i t i e s  of the method suggested,  as wel l  as its analytic 
just i f icat ion,  a r e  n e c e s s a r y .  
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N O T A T I O N  

T, t ime step; h, spatial  step; U(u, v), gas velocity;  n ,  thermal  diffusivity; v, kinematic  viscosi ty;  Cs, 
sound velocity;  ~,  unknown vec tor  function; A, a nonlinear  different ia l  opera to r  matr ix ;  t, t ime; x and y, 
Car tes ian  coordinates ;  p, density; P, p r e s s u r e ;  T, t empera tu re ;  7, adiabatic index; M, Mach number;  Re, 
Reynolds number;  P r ,  Prandt l  number;  Ra, Rayleigh number;  Nu, Nussel t  number;  F r  x and Fry ,  Froude num- 
be r s ;  A, gr id  opera tor ;  E, unity opera tor ;  K, Courant  number;  H 0 and L 0, s izes  of the calculat ion domain; Tl 
and T 2, side wall t empera t f i res ;  p~, gas densi ty at  the cold wall; g, gravi tat ional  accelerat ion;  R, gas constant;  
and ~, dynamic viscosi ty .  
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E F F E C T  O F  C A R B O N  ON H E A T  T R A N S F E R  

T H R O U G H  A P I S T O N  O F  AN I N T E R N A L  

C O M B U S T I O N  E N G I N E  

S. I. Sevast'yanov UDC 536.248 

By analyzing and cor re la t ing  the resu l t s  of the rmomet r i za t ion  of a 11D45 diesel  we es t imate  
the effect  of carbon in oi l -cool ing channels on p a r a m e t e r s  fo r  heat t r ans fe r  through a piston. 

When boosted  diesel  locomotives operate  on group B motor  oils (M-12B, M-14B, etc.) ,  carbon deposits  
f o r m  on cyl inder  and piston components.  Observat ions show that carbon deposits  in the inner cavity of an oi l-  
cooled piston head a r e  pa r t i cu la r ly  harmful  and dangerous.  Heavy carbon deposits  and ineffective decrus ta -  
tion in the oi l-cooling region shor ten the useful l ife of pistons in 2D100, 10D100, 11D45, etc.  d iesels  by a fac-  
tor  of th ree  to four [ 1, 2 ]. 

It is well known that carbon deposits  have an appreciable  effect  on heat t rans fe r ,  yet  in t r ea t i ses  on 
heat  t r ans fe r  in in ternal  combustion engines the effect  of carbon deposits is genera l ly  ignored. This natura l ly  
hampers  the i r  use in p rac t i ca l  problems of increas ing  the re l iabi l i ty  of diesel  locomotives.  

On the bas is  of analysis  and cor re la t ion  of the resu l t s  of the rmomet r i za t ion  of a 11D45 diesel  we es t i -  
mate  the effect  of carbon on heat  t r a n s f e r  through a piston [3-5].  
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